Hodge modules with support a point. Last time, we introduced polarized Hodge modules. The definition contains the – at first glance somewhat mysterious – conditions that $F_{\bullet}\mathcal{M}$ needs to respect the local V-filtrations. Recall that this means that

$$t\colon F_k V^\alpha \to F_k V^{\alpha+1}$$

should be an isomorphism for $\alpha > -1$, and that

$$\partial_t \colon F_k \operatorname{gr}_V^{\alpha} \to F_{k+1} \operatorname{gr}_V^{\alpha-1}$$

should be an isomorphism for $\alpha < 0$. I mentioned that these conditions are need to make the filtration $F_{\bullet}\mathcal{M}$ see the properties of the \mathscr{D} -module \mathcal{M} . We also saw one example of this: if \mathcal{M} is a bundle with connection, then the first condition forces each $F_k\mathcal{M}$ to be a subbundle. Here is another example.

Example 21.1. Suppose that $\mathcal{M} = H \otimes_{\mathbb{C}} \mathbb{C}[\partial_t]$ is a \mathscr{D}_{Δ} -module supported at the origin, and that $F_{\bullet}\mathcal{M}$ is a "good" filtration by coherent \mathscr{O}_{Δ} -modules. I claim that if $F_{\bullet}\mathcal{M}$ respects the local V-filtrations, then it must come from a filtration $F_{\bullet}H$ on the vector space H, as in the construction from last week. Recall that $V^{-1}\mathcal{M} = H \otimes 1$, and more generally

$$V^{-(\ell+1)}\mathcal{M} = \sum_{j=0}^{\ell} H \otimes \partial_t^j.$$

We first construct a filtration on H. Let $p \in \mathbb{Z}$ be such that $F_{p-1}\mathcal{M} = 0$ but $F_p\mathcal{M} \neq 0$. The inclusion $i: H \hookrightarrow \mathcal{M}$, given by $i(h) = h \otimes 1$, allows us to define

$$F_k H = i^{-1} (F_k \mathcal{M})$$

By construction, $F_{p-1}H = 0$, and $F_k\mathcal{M} \supseteq F_kH \otimes 1$; since $F_{\bullet}\mathcal{M}$ is compatible with the action by differential operators, this gives

$$F_k\mathcal{M}\supseteq\sum_{j=0}^{\infty}F_{k-j}H\otimes\partial_t^j.$$

We are going to prove that the two sides are equal, by induction on $k \ge p$.

The first case is k = p. Let us show that $F_p \mathcal{M} \subseteq V^{-1} \mathcal{M}$. Since the V-filtration exhausts \mathcal{M} , we certainly have $F_p \mathcal{M} \subseteq V^{\alpha} \mathcal{M}$ for some $\alpha \ll 0$. By assumption,

$$\partial_t \colon F_{p-1}\operatorname{gr}_V^{\alpha+1}\mathcal{M} \to F_p\operatorname{gr}_V^\alpha\mathcal{M}$$

is an isomorphism as long as $\alpha < -1$; because the left-hand side is zero, this means that $F_p\mathcal{M} \subseteq V^{>\alpha}\mathcal{M}$. We can repeat this argument as long as $\alpha < -1$; eventually, we reach the conclusion that $F_p\mathcal{M} \subseteq V^{-1}\mathcal{M}$. But $V^{-1}\mathcal{M} = H \otimes 1$, and so

$$F_p\mathcal{M} = F_pH \otimes 1$$

Now let us deal with the general case. From the fact that

$$\partial_t \colon F_k \operatorname{gr}_V^{\alpha+1} \mathcal{M} \to F_{k+1} \operatorname{gr}_V^{\alpha} \mathcal{M}$$

is an isomorphism for $\alpha > -1$, we deduce that

$$F_{k+1}\mathcal{M}\cap V^{\alpha}\mathcal{M}=F_{k+1}\mathcal{M}\cap V^{>\alpha}\mathcal{M}+\partial_t(F_k\mathcal{M}\cap V^{\alpha+1}\mathcal{M}),$$

and therefore (by gradually increasing α as before) that

$$F_{k+1}\mathcal{M} = F_{k+1}\mathcal{M} \cap V^{-1}\mathcal{M} + \partial_t(F_k\mathcal{M}).$$

Since $F_{k+1}\mathcal{M} \cap V^{-1}\mathcal{M} = F_{k+1}H \otimes 1$, we get

$$F_{k+1}\mathcal{M} = F_{k+1}H \otimes 1 + \partial_t (F_k\mathcal{M}),$$

which gives the desired result by induction.

Now let us suppose that $\mathcal{M} = H \otimes_{\mathbb{C}} \mathbb{C}[\partial_t]$ is a polarized Hodge module of weight w. It is not hard to see that the pairing $h_{\mathcal{M}}$ is induced from a pairing on the vector space H. Indeed, for any $x, y \in H$, the two sections $x \otimes 1$ and $y \otimes 1$ are annihilated by t, and therefore

$$t \cdot h_{\mathcal{M}}(x \otimes 1, y \otimes 1) = \overline{t} \cdot h_{\mathcal{M}}(x \otimes 1, y \otimes 1) = 0$$

by sesquilinearity. Therefore $h_{\mathcal{M}}(x \otimes 1, y \otimes 1)$ must be a multiple of the δ -function, and we obtain a well-defined pairing $h: H \otimes_{\mathbb{C}} \overline{H} \to \mathbb{C}$ with the property that

$$\langle h_{\mathcal{M}}(x \otimes 1, y \otimes 1), \varphi dt \wedge d\overline{t} \rangle = h(x, y) \cdot \varphi(0).$$

By sesquilinearity, the entire pairing $h_{\mathcal{M}}$ is then determined by h, as in the construction from last week.

The definition of a polarized Hodge module now implies that H is actually a polarized Hodge structure of weight w. Indeed, we have $\operatorname{gr}_{V}^{-1} \mathcal{M} \cong H$, and since the operator $N = t\partial_t - (-1) = \partial_t t$ acts trivially, we get $\operatorname{gr}_{V}^{-1} \mathcal{M} = \operatorname{gr}_{0}^{W} \operatorname{gr}_{V}^{-1} \mathcal{M}$. One can check that the induced pairing on H is just the pairing h from above. Since \mathcal{M} is a polarized Hodge module of weight w, it follows that H has a Hodge structure of weight w, polarized by the pairing h (which must therefore be hermitian). The Hodge filtration is induced by $F_{\bullet+1}\mathcal{M}$, hence equal to $F_{\bullet+1}H$ in the notation from above. Since

$$F_k \mathcal{M} = \sum_{j=0}^{\infty} F_{k-j} H \otimes \partial_t^j,$$

we find that the Hodge filtration on the Hodge structure H and the Hodge filtration on \mathcal{M} are off by -1; this is consistent with the construction from last week.

The limiting mixed Hodge structure. Let \mathcal{M} be a polarized Hodge module of weight w on Δ . Our goal is to analyze what the definition tells us about the two vector spaces $H = \operatorname{gr}_V^0 \mathcal{M}$ and $H' = \operatorname{gr}_V^{-1} \mathcal{M}$, and about the linear mappings

$$t \colon \operatorname{gr}_V^{-1} \to \operatorname{gr}_V^0 \quad \text{and} \quad \partial_t \colon \operatorname{gr}_V^0 \to \operatorname{gr}_V^{-1}$$

On H, we have the nilpotent operator $N = t\partial_t$, its monodromy weight filtration $W_{\bullet}H$, and the filtration $F_{\bullet}H$ induced by $F_{\bullet}\mathcal{M}$; by definition,

$$\bigoplus_{\ell \in \mathbb{Z}} H_{\ell} = \bigoplus_{\ell \in \mathbb{Z}} \operatorname{gr}_{\ell}^{W} H$$

is a Hodge-Lefschetz structure of central weight w - 1. In particular, each H_{ℓ} is a Hodge structure of weight $w - 1 + \ell$, whose Hodge filtration $F_{\bullet}H_{\ell}$ is induced by $F_{\bullet}H$. On H', we have the nilpotent operator $N' = t\partial_t + 1 = \partial_t t$, its monodromy weight filtration $W_{\bullet}H'$, and the filtration $F_{\bullet}H'$ induced by $F_{\bullet}\mathcal{M}$; by definition

$$\bigoplus_{\ell\in\mathbb{Z}}H'_\ell=\bigoplus_{\ell\in\mathbb{Z}}\operatorname{gr}^W_\ell H'$$

is a Hodge-Lefschetz structure of central weight w. In particular, each H'_{ℓ} is a Hodge structure of weight $w + \ell$, whose Hodge filtration $F_{\bullet+1}H'_{\ell}$ is induced by $F_{\bullet+1}H'$.

It is customary to denote the linear mapping $\partial_t \colon H \to H'$ by the symbol $c \colon H \to H'$, as an abbreviation for "canonical"; likewise, the mapping $t \colon H' \to H$ is denote by $v \colon H' \to H$, as an abbreviation for "variation". The commutative diagram

$$\begin{array}{c} H \xrightarrow{c} H' \\ \downarrow_{N \swarrow v} \qquad \downarrow_{N} \\ H \xrightarrow{c} H' \end{array}$$

expresses the fact that N = vc and N' = cv. In this setting, the weight filtrations of the two nilpotent operators N and N' are related as follows.

111

Lemma 21.2. One has $c(W_{\ell}H) \subseteq W_{\ell-1}H'$ and $v(W_{\ell}H') \subseteq W_{\ell-1}H$.

We therefore get an induced mapping

$$c\colon H_\ell \to H'_{\ell-1};$$

both sides are polarized Hodge structures of weight $w-1+\ell$. Moreover, c maps F_kH_ℓ into $F_{k+1}H'_{\ell-1}$, due to the fact that $\partial_t \cdot F_k\mathcal{M} \subseteq F_{k+1}\mathcal{M}$; from the compatibility of c with the polarizations, one deduces that c is actually a morphism of Hodge structures. Similarly, we get an induced mapping

$$v \colon H'_{\ell} \to H_{\ell-1},$$

where the left-hand side is polarized Hodge structure of weight $w + \ell$ with Hodge filtration $F_{\bullet+1}H'_{\ell}$, and the right-hand side a polarized Hodge structure of weight $w + \ell - 2$ with Hodge filtration $F_{\bullet}H_{\ell-1}$. Since v maps $F_kH'_{\ell}$ into F_kH_{ℓ} , we can add a Tate twist to get a morphism of Hodge structures

$$c\colon H'_{\ell}\to H_{\ell-1}(-1).$$

One can then show that

$$c\colon \bigoplus_{\ell\in\mathbb{Z}} \operatorname{gr}^W_\ell H \to \bigoplus_{\ell\in\mathbb{Z}} \operatorname{gr}^W_{\ell-1} H'$$

is a morphism of Hodge-Lefschetz structures of central weight w - 1, and that

$$v \colon \bigoplus_{\ell \in \mathbb{Z}} \operatorname{gr}_{\ell}^{W} H' \to \bigoplus_{\ell \in \mathbb{Z}} \operatorname{gr}_{\ell-1}^{W} H(-1)$$

is a morphism of Hodge-Lefschetz structures of central weight w.

Let us note the following important consequence of the fact that c is a morphism of Hodge structures.

Lemma 21.3. We have $\partial_t(\operatorname{gr}^0_V) \cap F_k \operatorname{gr}^{-1}_V = \partial_t(F_{k-1} \operatorname{gr}^0_V)$.

Proof. The statement is that $c: H \to H'$ is strictly compatible with the filtrations $F_{\bullet}H$ and $F_{\bullet+1}H'$. Since $c(W_{\ell}H) \subseteq W_{\ell-1}H'$, it suffices to show that this is true for $c: H_{\ell} \to H'_{\ell-1}$. But this is a morphism of Hodge structures, and morphisms of Hodge structures are always strictly compatible with the Hodge filtrations. \Box

Polarized Hodge modules with strict support. It is possible to characterize those polarized Hodge modules on Δ that come from a variation of Hodge structure on Δ^* purely in terms of the V-filtration. Let me explain next how this works. Suppose that \mathcal{M} is a polarized Hodge module on Δ . The general properties of the V-filtration imply that $\mathcal{M} = \mathscr{D}_{\Delta} \cdot V^{-1} \mathcal{M}$, which means concretely that

$$\mathcal{M} = \sum_{j=0}^{\infty} \partial_t^j \cdot V^{-1} \mathcal{M}.$$

Let us briefly recall the argument. As long as $\alpha < -1$, the mapping

$$\partial_t \colon \operatorname{gr}_V^{\alpha+1} \mathcal{M} \to \operatorname{gr}_V^{\alpha} \mathcal{M}$$

is an isomorphism; this gives $V^{\alpha}\mathcal{M} = V^{>\alpha}\mathcal{M} + \partial_t \cdot V^{\alpha+1}\mathcal{M}$. We can iterate this by gradually increasing the value of α , until we get to

$$V^{\alpha}\mathcal{M} = V^{-1}\mathcal{M} + \partial_t \cdot V^{\alpha+1}\mathcal{M}.$$

From this, it is easy to deduce that

$$V^{\alpha}\mathcal{M} \subseteq \sum_{j=0}^{\infty} \partial_t^j \cdot V^{-1}\mathcal{M}$$

for any $\alpha < -1$. Since the V-filtration is exhaustive, this gives the desired result.

In fact, the same thing is true for the filtration $F_{\bullet}\mathcal{M}$, because of the condition that $F_{\bullet}\mathcal{M}$ respects the local V-filtrations. As before, we set $F_k V^{\alpha} \mathcal{M} = F_k \mathcal{M} \cap V^{\alpha} \mathcal{M}$. In the above argument,

$$\partial_t \colon F_{k-1}\operatorname{gr}_V^{\alpha+1}\mathcal{M} \to F_k\operatorname{gr}_V^{\alpha}\mathcal{M}$$

is an isomorphism for $\alpha < -1$, and as before, this leads to

$$F_k V^{\alpha} \mathcal{M} = F_k V^{-1} \mathcal{M} + \partial_t \cdot F_{k-1} V^{\alpha+1} \mathcal{M}.$$

Since the V-filtration is exhaustive, one deduces that

$$F_k \mathcal{M} = \sum_{j=0}^{\infty} \partial_t^j \cdot F_{k-j} V^{-1} \mathcal{M},$$

which describes the entire filtration $F_{\bullet}\mathcal{M}$ in terms of the filtration $F_{\bullet}V^{-1}\mathcal{M}$ on the coherent \mathscr{O}_{Δ} -module $V^{-1}\mathcal{M}$. (By the noetherian property of coherent sheaves, we have $F_kV^{-1}\mathcal{M} = V^{-1}\mathcal{M}$ for $k \gg 0$; this shows again that the first so many steps in the filtration $F_{\bullet}\mathcal{M}$ determine the whole thing.)

In the example from last week where $\mathcal{M} = \mathscr{D}_{\Delta} \cdot \widetilde{\mathscr{V}}^{>-1} \subseteq \widetilde{\mathscr{V}}$, the \mathscr{D} -module was generated by $V^{>-1}\mathcal{M} = \widetilde{\mathscr{V}}^{>-1}$ (by definition), and the filtration $F_{\bullet}\mathcal{M}$ was given by the better formula

$$F_k \mathcal{M} = \sum_{j=0}^{\infty} \partial_t^j \cdot F_{k-j} V^{>-1} \mathcal{M},$$

This gives a necessary condition for a polarized Hodge module on Δ to come from a variation of Hodge structure on Δ^* . This condition can be formulated more nicely as follows.

Definition 21.4. Let X be a Riemann surface, and let \mathcal{M} be a polarized Hodge module on X. We say that \mathcal{M} has *strict support* X if \mathcal{M} does not have any nontrivial subobject or quotient object whose support is a point.

Let us see how to express this condition in terms of the local V-filtration. After restricting to a neighborhood of a given point, we can assume that \mathcal{M} is a polarized Hodge module on Δ , with V-filtration $V^{\bullet}\mathcal{M}$. If \mathcal{M} has a nontrivial submodule supported on the origin, then we can find a local section $m \in \mathcal{M}$ such that tm = 0but $m \neq 0$. Since $t: \operatorname{gr}_V^{\alpha} \mathcal{M} \to \operatorname{gr}_V^{\alpha+1} \mathcal{M}$ is an isomorphism except when $\alpha = -1$, we get $m \in V^{-1}\mathcal{M}$; and since $t: V^{\alpha}\mathcal{M} \to V^{\alpha+1}\mathcal{M}$ is an isomorphism for $\alpha > -1$, we must have $m \notin V^{>-1}\mathcal{M}$. This means that the image of m in $\operatorname{gr}_V^{-1}\mathcal{M}$ is a nonzero element in the kernel of

$$t: \operatorname{gr}_V^{-1} \mathcal{M} \to \operatorname{gr}_V^0 \mathcal{M}.$$

Therefore injectivity of this mapping implies that \mathcal{M} does not have nontrivial subobjects supported on the origin; in fact, the two conditions are equivalent. By a similar argument, a nontrivial quotient object supported on the origin gives a nontrivial element in the cokernel of

$$\partial_t \colon \operatorname{gr}_V^0 \mathcal{M} \to \operatorname{gr}_V^{-1} \mathcal{M},$$

and so surjectivity of this mapping implies (and is actually equivalent to) that there are no such quotients. We can summarize this as follows.

Lemma 21.5. A polarized Hodge module \mathcal{M} on a Riemann surface X has strict support X iff at any point $x \in X$, the mapping $t: \operatorname{gr}_V^{-1} \to \operatorname{gr}_V^0$ is injective and the mapping $\partial_t: \operatorname{gr}_V^0 \to \operatorname{gr}_V^{-1}$ is surjective. Since $\partial_t \colon \operatorname{gr}_V^0 \mathcal{M} \to \operatorname{gr}_V^{-1} \mathcal{M}$ is surjective, our earlier argument proves that

$$\mathcal{M} = \sum_{j=0}^{\infty} \partial_t^j \cdot V^{>-1} \mathcal{M},$$

and so \mathcal{M} is generated as a \mathscr{D}_{Δ} -module by $V^{>-1}\mathcal{M}$. We already know that outside the origin, \mathcal{M} is a vector bundle with connection. Let us denote this vector bundle by \mathscr{V} , and let $\tilde{\mathscr{V}}^{\alpha}$ be the canonical extension.

Lemma 21.6. For $\alpha > -1$, we have $V^{\alpha}\mathcal{M} = \tilde{\mathscr{V}}^{\alpha}$.

Proof. The injectivity of $t: \operatorname{gr}_V^{-1} \mathcal{M} \to \operatorname{gr}_V^0 \mathcal{M}$ implies that $t: \mathcal{M} \to \mathcal{M}$ is injective; therefore each $V^{\alpha}\mathcal{M}$ is a torsion-free \mathscr{O}_{Δ} -module, hence locally free. The action by $t\partial_t$ defines a logarithmic connection

$$\nabla \colon V^{\alpha}\mathcal{M} \to \Omega^{1}_{\Delta}(\log 0) \otimes_{\mathscr{O}_{\Delta}} V^{\alpha}\mathcal{M}$$

on this bundle, and for $\alpha > -1$, we have

$$V^{lpha}\mathcal{M}/tV^{lpha}\mathcal{M}=V^{lpha}\mathcal{M}/V^{lpha+1}\mathcal{M}.$$

Therefore the residue $\operatorname{Res}_0 \nabla$, which acts as multiplication by $t\partial_t$, has eigenvalues in the interval $[\alpha, \alpha + 1)$, and since the conditions uniquely characterize the canonical extension, we get $V^{\alpha}\mathcal{M} = \tilde{\mathcal{V}}^{\alpha}$.

What about the filtration? If we knew that

$$\partial_t \colon F_k \operatorname{gr}_V^0 \mathcal{M} \to F_{k+1} \operatorname{gr}_V^{-1} \mathcal{M}$$

was surjective for every $k \in \mathbb{Z}$, the same reasoning as before would show that

$$F_k \mathcal{M} = \sum_{j=0}^{\infty} \partial_t^j \cdot F_{k-j} V^{>-1} \mathcal{M} = \sum_{j=0}^{\infty} \partial_t^j \cdot F_{k-j} \tilde{\mathcal{V}}^{>-1},$$

as in the construction from last week. The problem is that this surjectivity is not part of the definition of a polarized Hodge module. Fortunately, the result is still true, by virtue of Lemma 21.3 (in the special case where ∂_t is surjective).

So far, we know that \mathcal{M} restricts to a polarized variation of Hodge structure \mathscr{V} on the punctured disk, and that both \mathcal{M} and $F_{\bullet}\mathcal{M}$ are obtained from \mathscr{V} by the construction from last week. One can show moreover that the pairing $h_{\mathcal{M}}$ is determined by the polarization on \mathscr{V} in the same way, and so our polarized Hodge module with strict support Δ is actually the polarized Hodge module associated to \mathscr{V} by the construction from last week. This is the essential step in the proof of the following theorem.

Theorem 21.7 (Saito). Let X be a Riemann surface.

- (a) If $Z \subseteq X$ is a discrete subset, then a polarized variation of Hodge structure of weight n on $X \setminus Z$ extends uniquely to a polarized Hodge module of weight n + 1 with strict support X.
- (b) Every polarized Hodge module of weight n + 1 with strict support X arises in this way.