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Lecture 21: November 13

Hodge modules with support a point. Last time, we introduced polarized
Hodge modules. The definition contains the – at first glance somewhat mysterious
– conditions that F•M needs to respect the local V-filtrations. Recall that this
means that

t : FkV
α → FkV

α+1

should be an isomorphism for α > −1, and that

∂t : Fk grαV → Fk+1 grα−1
V

should be an isomorphism for α < 0. I mentioned that these conditions are need to
make the filtration F•M see the properties of the D-module M. We also saw one
example of this: if M is a bundle with connection, then the first condition forces
each FkM to be a subbundle. Here is another example.

Example 21.1. Suppose that M = H ⊗C C[∂t] is a D∆-module supported at the
origin, and that F•M is a “good” filtration by coherent O∆-modules. I claim that if
F•M respects the local V-filtrations, then it must come from a filtration F•H on the
vector space H, as in the construction from last week. Recall that V −1M = H⊗1,
and more generally

V −(`+1)M =
∑̀

j=0

H ⊗ ∂jt .

We first construct a filtration on H. Let p ∈ Z be such that Fp−1M = 0 but
FpM 6= 0. The inclusion i : H ↪→M, given by i(h) = h⊗ 1, allows us to define

FkH = i−1(FkM).

By construction, Fp−1H = 0, and FkM⊇ FkH ⊗ 1; since F•M is compatible with
the action by differential operators, this gives

FkM⊇
∞∑

j=0

Fk−jH ⊗ ∂jt .

We are going to prove that the two sides are equal, by induction on k ≥ p.
The first case is k = p. Let us show that FpM⊆ V −1M. Since the V-filtration

exhausts M, we certainly have FpM⊆ V αM for some α� 0. By assumption,

∂t : Fp−1 grα+1
V M→ Fp grαV M

is an isomorphism as long as α < −1; because the left-hand side is zero, this means
that FpM⊆ V >αM. We can repeat this argument as long as α < −1; eventually,
we reach the conclusion that FpM⊆ V −1M. But V −1M = H ⊗ 1, and so

FpM = FpH ⊗ 1.

Now let us deal with the general case. From the fact that

∂t : Fk grα+1
V M→ Fk+1 grαV M

is an isomorphism for α > −1, we deduce that

Fk+1M∩ V αM = Fk+1M∩ V >αM+ ∂t
(
FkM∩ V α+1M

)
,

and therefore (by gradually increasing α as before) that

Fk+1M = Fk+1M∩ V −1M+ ∂t
(
FkM

)
.

Since Fk+1M∩ V −1M = Fk+1H ⊗ 1, we get

Fk+1M = Fk+1H ⊗ 1 + ∂t
(
FkM

)
,

which gives the desired result by induction.
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Now let us suppose thatM = H⊗CC[∂t] is a polarized Hodge module of weight
w. It is not hard to see that the pairing hM is induced from a pairing on the vector
space H. Indeed, for any x, y ∈ H, the two sections x⊗ 1 and y⊗ 1 are annihilated
by t, and therefore

t · hM(x⊗ 1, y ⊗ 1) = t · hM(x⊗ 1, y ⊗ 1) = 0

by sesquilinearity. Therefore hM(x⊗ 1, y⊗ 1) must be a multiple of the δ-function,
and we obtain a well-defined pairing h : H ⊗C H → C with the property that

〈
hM(x⊗ 1, y ⊗ 1), ϕdt ∧ dt

〉
= h(x, y) · ϕ(0).

By sesquilinearity, the entire pairing hM is then determined by h, as in the con-
struction from last week.

The definition of a polarized Hodge module now implies that H is actually a
polarized Hodge structure of weight w. Indeed, we have gr−1

V M ∼= H, and since

the operator N = t∂t − (−1) = ∂tt acts trivially, we get gr−1
V M = grW0 gr−1

V M.
One can check that the induced pairing on H is just the pairing h from above. Since
M is a polarized Hodge module of weight w, it follows that H has a Hodge structure
of weight w, polarized by the pairing h (which must therefore be hermitian). The
Hodge filtration is induced by F•+1M, hence equal to F•+1H in the notation from
above. Since

FkM =

∞∑

j=0

Fk−jH ⊗ ∂jt ,

we find that the Hodge filtration on the Hodge structure H and the Hodge filtration
on M are off by −1; this is consistent with the construction from last week.

The limiting mixed Hodge structure. LetM be a polarized Hodge module of
weight w on ∆. Our goal is to analyze what the definition tells us about the two
vector spaces H = gr0

V M and H ′ = gr−1
V M, and about the linear mappings

t : gr−1
V → gr0

V and ∂t : gr0
V → gr−1

V .

On H, we have the nilpotent operator N = t∂t, its monodromy weight filtration
W•H, and the filtration F•H induced by F•M; by definition,

⊕

`∈Z
H` =

⊕

`∈Z
grW` H

is a Hodge-Lefschetz structure of central weight w − 1. In particular, each H` is a
Hodge structure of weight w − 1 + `, whose Hodge filtration F•H` is induced by
F•H. On H ′, we have the nilpotent operator N ′ = t∂t + 1 = ∂tt, its monodromy
weight filtration W•H ′, and the filtration F•H ′ induced by F•M; by definition

⊕

`∈Z
H ′` =

⊕

`∈Z
grW` H ′

is a Hodge-Lefschetz structure of central weight w. In particular, each H ′` is a Hodge
structure of weight w + `, whose Hodge filtration F•+1H

′
` is induced by F•+1H

′.
It is customary to denote the linear mapping ∂t : H → H ′ by the symbol c : H →

H ′, as an abbreviation for “canonical”; likewise, the mapping t : H ′ → H is denote
by v : H ′ → H, as an abbrevation for “variation”. The commutative diagram

H H ′

H H ′

c

N N ′v

c

expresses the fact that N = vc and N ′ = cv. In this setting, the weight filtrations
of the two nilpotent operators N and N ′ are related as follows.



111

Lemma 21.2. One has c(W`H) ⊆W`−1H
′ and v(W`H

′) ⊆W`−1H.

We therefore get an induced mapping

c : H` → H ′`−1;

both sides are polarized Hodge structures of weight w−1+`. Moreover, cmaps FkH`

into Fk+1H
′
`−1, due to the fact that ∂t · FkM ⊆ Fk+1M; from the compatibility

of c with the polarizations, one deduces that c is actually a morphism of Hodge
structures. Similarly, we get an induced mapping

v : H ′` → H`−1,

where the left-hand side is polarized Hodge structure of weight w + ` with Hodge
filtration F•+1H

′
`, and the right-hand side a polarized Hodge structure of weight

w+ `−2 with Hodge filtration F•H`−1. Since v maps FkH
′
` into FkH`, we can add

a Tate twist to get a morphism of Hodge structures

c : H ′` → H`−1(−1).

One can then show that

c :
⊕

`∈Z
grW` H →

⊕

`∈Z
grW`−1H

′

is a morphism of Hodge-Lefschetz structures of central weight w − 1, and that

v :
⊕

`∈Z
grW` H ′ →

⊕

`∈Z
grW`−1H(−1)

is a morphism of Hodge-Lefschetz structures of central weight w.
Let us note the following important consequence of the fact that c is a morphism

of Hodge structures.

Lemma 21.3. We have ∂t(gr0
V ) ∩ Fk gr−1

V = ∂t(Fk−1 gr0
V ).

Proof. The statement is that c : H → H ′ is strictly compatible with the filtrations
F•H and F•+1H

′. Since c(W`H) ⊆ W`−1H
′), it suffices to show that this is true

for c : H` → H ′`−1. But this is a morphism of Hodge structures, and morphisms of
Hodge structures are always strictly compatible with the Hodge filtrations. �

Polarized Hodge modules with strict support. It is possible to characterize
those polarized Hodge modules on ∆ that come from a variation of Hodge structure
on ∆∗ purely in terms of the V-filtration. Let me explain next how this works.
Suppose that M is a polarized Hodge module on ∆. The general properties of the
V-filtration imply that M = D∆ · V −1M, which means concretely that

M =
∞∑

j=0

∂jt · V −1M.

Let us briefly recall the argument. As long as α < −1, the mapping

∂t : grα+1
V M→ grαV M

is an isomorphism; this gives V αM = V >αM + ∂t · V α+1M. We can iterate this
by gradually increasing the value of α, until we get to

V αM = V −1M+ ∂t · V α+1M.

From this, it is easy to deduce that

V αM⊆
∞∑

j=0

∂jt · V −1M

for any α < −1. Since the V-filtration is exhaustive, this gives the desired result.
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In fact, the same thing is true for the filtration F•M, because of the condition
that F•M respects the local V-filtrations. As before, we set FkV

αM = FkM∩
V αM. In the above argument,

∂t : Fk−1 grα+1
V M→ Fk grαV M

is an isomorphism for α < −1, and as before, this leads to

FkV
αM = FkV

−1M+ ∂t · Fk−1V
α+1M.

Since the V-filtration is exhaustive, one deduces that

FkM =

∞∑

j=0

∂jt · Fk−jV −1M,

which describes the entire filtration F•M in terms of the filtration F•V −1M on the
coherent O∆-module V −1M. (By the noetherian property of coherent sheaves, we
have FkV

−1M = V −1M for k � 0; this shows again that the first so many steps
in the filtration F•M determine the whole thing.)

In the example from last week where M = D∆ · Ṽ >−1 ⊆ Ṽ , the D-module was
generated by V >−1M = Ṽ >−1 (by definition), and the filtration F•M was given
by the better formula

FkM =

∞∑

j=0

∂jt · Fk−jV >−1M,

This gives a necessary condition for a polarized Hodge module on ∆ to come from a
variation of Hodge structure on ∆∗. This condition can be formulated more nicely
as follows.

Definition 21.4. Let X be a Riemann surface, and let M be a polarized Hodge
module on X. We say that M has strict support X if M does not have any
nontrivial subobject or quotient object whose support is a point.

Let us see how to express this condition in terms of the local V-filtration. After
restricting to a neighborhood of a given point, we can assume thatM is a polarized
Hodge module on ∆, with V-filtration V •M. If M has a nontrivial submodule
supported on the origin, then we can find a local section m ∈M such that tm = 0
but m 6= 0. Since t : grαV M→ grα+1

V M is an isomorphism except when α = −1,
we get m ∈ V −1M; and since t : V αM→ V α+1M is an isomorphism for α > −1,
we must have m 6∈ V >−1M. This means that the image of m in gr−1

V M is a
nonzero element in the kernel of

t : gr−1
V M→ gr0

V M.

Therefore injectivity of this mapping implies thatM does not have nontrivial sub-
objects supported on the origin; in fact, the two conditions are equivalent. By
a similar argument, a nontrivial quotient object supported on the origin gives a
nontrivial element in the cokernel of

∂t : gr0
V M→ gr−1

V M,

and so surjectivity of this mapping implies (and is actually equivalent to) that there
are no such quotients. We can summarize this as follows.

Lemma 21.5. A polarized Hodge module M on a Riemann surface X has strict
support X iff at any point x ∈ X, the mapping t : gr−1

V → gr0
V is injective and the

mapping ∂t : gr0
V → gr−1

V is surjective.
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Since ∂t : gr0
V M→ gr−1

V M is surjective, our earlier argument proves that

M =

∞∑

j=0

∂jt · V >−1M,

and soM is generated as a D∆-module by V >−1M. We already know that outside
the origin,M is a vector bundle with connection. Let us denote this vector bundle
by V , and let Ṽ α be the canonical extension.

Lemma 21.6. For α > −1, we have V αM = Ṽ α.

Proof. The injectivity of t : gr−1
V M→ gr0

V M implies that t : M→M is injective;
therefore each V αM is a torsion-free O∆-module, hence locally free. The action by
t∂t defines a logarithmic connection

∇ : V αM→ Ω1
∆(log 0)⊗O∆

V αM
on this bundle, and for α > −1, we have

V αM/tV αM = V αM/V α+1M.

Therefore the residue Res0∇, which acts as multiplication by t∂t, has eigenvalues in
the interval [α, α+ 1), and since the conditions uniquely characterize the canonical

extension, we get V αM = Ṽ α. �
What about the filtration? If we knew that

∂t : Fk gr0
V M→ Fk+1 gr−1

V M
was surjective for every k ∈ Z, the same reasoning as before would show that

FkM =

∞∑

j=0

∂jt · Fk−jV >−1M =

∞∑

j=0

∂jt · Fk−jṼ >−1,

as in the construction from last week. The problem is that this surjectivity is not
part of the definition of a polarized Hodge module. Fortunately, the result is still
true, by virtue of Lemma 21.3 (in the special case where ∂t is surjective).

So far, we know that M restricts to a polarized variation of Hodge structure
V on the punctured disk, and that both M and F•M are obtained from V by
the construction from last week. One can show moreover that the pairing hM is
determined by the polarization on V in the same way, and so our polarized Hodge
module with strict support ∆ is actually the polarized Hodge module associated to
V by the construction from last week. This is the essential step in the proof of the
following theorem.

Theorem 21.7 (Saito). Let X be a Riemann surface.

(a) If Z ⊆ X is a discrete subset, then a polarized variation of Hodge structure
of weight n on X \Z extends uniquely to a polarized Hodge module of weight
n+ 1 with strict support X.

(b) Every polarized Hodge module of weight n+ 1 with strict support X arises
in this way.
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